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Abstract

The outputs of R&D, such as new research findings and new products and services, are generated with the aid of
specialized problem-solving processes. These processes are somewhat arcane and have been largely ignored in studies of
technical change. However, their improvement can significantly affect the kinds of research problems that can be addressed,
the efficiency and speed with which R&D can be performed, and the competitive positions of firms employing them. In this
paper, we first describe the general nature of the trial-and-error problem-solving processes and strategies for experimentation
used in the development of new products and services. We next discuss the rapid advances being made in problem-solving
methods, and the impact such advances can have on the competitive position of adopting firms. Finally, we offer a detailed
case study of the impact one novel experimental method, combinatorial chemistry, is having on the economics of the drug
discovery process. q 1998 Elsevier Science B.V. All rights reserved.
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1. Introduction

The impact of the outputs of the R&D process on
firms and industries has long been acknowledged.
For example, the major consequences of the develop-
ment and continued improvement of semiconductors
computerized manufacturing and have been noted by
many. However, the outputs of R&D are themselves
‘manufactured’ with the aid of specialized problem-
solving processes. These underlying processes have
been largely ignored in studies of technical change.

) Corresponding author.

The application of problem-solving processes, on the
other hand, represent an increasing proportion of

Ž .economic activity Carter, 1995 , and the processes
themselves are improving rapidly both in terms of
the kinds and efficiencies of outputs producible.
These changes, in turn, are having and will increas-
ingly have an impact on the competitive position of
adopting firms.

In this paper, we will explore the general nature
of the problem-solving processes used in R&D, and
the potential impact of novel problem-solving meth-
ods on firm R&D performance and competitive
standing. We begin by describing the problem-solv-
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ing process used in R&D in general terms, and
showing how different experimentation strategies can

Ž .influence R&D efficiency Section 2 . We next illus-
trate the rapid rate of advance affecting experimental
methods, and then observe that early developers or
adopters can have a competitive advantage over ri-
vals, because new methods are often difficult to

Ž .acquire and use Section 3 . We then present a field
study of combinatorial chemistry—a new method
now being introduced into the drug discovery pro-
cess that promises to make drug discovery both

Ž .faster and less costly Section 4 . This case is espe-
cially relevant to our topic because more effective
drug discovery methods can convey a great competi-
tive advantage to pharmaceutical firms: present drug
discovery processes are currently very lengthy and
expensive, and the commercial advantages to being
first with a significant new product can be very
large.

2. The problem-solving process

Research into the nature of problem-solving shows
that it consists of trial and error, directed by some
amount of insight as to the direction in which a

Ž .solution might lie Barron, 1988 . This general find-
ing is supported by empirical studies of problem-
solving in the specific arena of product and process

Ždevelopment Allen, 1966; Alexander, 1964; Clark
and Fujimoto, 1991; Iansiti, 1997; Marples, 1961;
Smith and Eppinger, 1997; Thomke, 1997; von Hip-

.pel and Tyre, 1995; Wheelwright and Clark, 1992 .
Such studies show trial-and-error learning conducted
via a process of conscious experimentation as a
prominent feature. In this section, we begin by dis-
cussing the general nature of trial-and-error
problem-solving via experimentation. Then, we dis-
cuss the creation of strategies for solving a given
problem via a number of related experiments.

2.1. Problem-solÕing Õia experimentation

Experimentation using trial-and-error problem-
solving begins with the selection or creation of one
or more possible solutions. The alternatives selected
may or may not include the best possible solutions—
one has no way of knowing. These are then tested

against an array of requirements and constraints
Ž .Duncker, 1945; Marples, 1961; Simon, 1969 . The
new information provided by a trial-and-error experi-
ment to an experimenter are those aspects of the

Ž .outcome that he or she did not was not able to
know or foresee or predict in advance—the ‘error’.
Test outcomes are used to revise and refine the
solutions under development, and generally, progress
is made in this way towards an acceptable result.

One may view the experimental trial-and-error
process as cycles that repeatedly ‘generate and test’

Ž .design alternatives Simon, 1969 . For example, one
might conceive of, design, and build a prototype of a

Žnew, more rapidly deploying airbag for a car gener-
.ate alternative and run an experiment to evaluate its

Ž .actual deployment speed test alternative . If the
results of the first experiment are satisfactory, one
stops. However, if the analysis shows that the results
of the initial experiment are not satisfactory, as is
usually the case, one may elect to modify one’s
experiment and ‘iterate’—try again. Modifications
may involve the experimental design, the experimen-
tal conditions, or even the nature of the desired
solution. For example, a researcher may design an
experiment with the goal of identifying a new
cardiovascular drug. However, experimental results
obtained on a given compound might suggest a
different therapeutic use, and cause researchers to
change their view of an acceptable solution accord-
ingly.

Experimentation is often carried out using simpli-
Ž .fied versions models of the eventually-intended test

object andror test environment. For example, air-
craft designers often conduct experiments on possi-
ble aircraft designs by testing a scale model of that
design in a ‘wind tunnel’—an apparatus that creates
high wind velocities that partially simulate the air-
craft’s intended operating environment. The value of
using models in experimentation is two-fold: to re-
duce investment in the aspects of reality that are
irrelevant for the experiment, and to ‘control out’
some aspects of reality that would affect the experi-
ment in order to simplify analysis of the results.
Thus, models of aircraft being subjected to wind
tunnel experiments generally include no internal de-
sign details such as the layout of the cabins—these
are both costly to model and typically irrelevant to
the outcome of wind tunnel tests, which are focused
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on the interaction between rapidly moving air and
the model’s exterior surface.

Models used in experimentation can be physical
in nature, as in the example just given, or they can
be represented in other forms. Computer simulation,
for example, involves representing experimental ob-
jects and experimental environments in digital form,
and then simulating their interaction within a com-

Ž .puter in a type of virtual experiment Thomke, 1998 .
Thus, one might model an automobile and a crash
barrier inside a computer, perform the computations
needed to simulate the crash of the model car into
the model barrier, and then calculate the effects of
that crash on the structure of the car via finite
element analysis. One could then assess the results of
this virtual experiment by viewing a visual display of
the ‘crashed’ car on a video display, andror by
looking at detailed calculations of the forces and
accelerations generated during the simulated crash
and the effects of these on the car’s structure.

Designers will sometimes test a real experimental
object in a real experimental context only after ex-
perimenting with several generations of models that
isolate different aspects of the real andror that en-
compass increasing amounts of the complexity of the
real. Developers of pharmaceuticals, for example,
might begin by testing a candidate drug molecule
against just the purified enzyme or receptor it is
intended to affect, and then test it again and again
against successively more complex models of the

Žhuman organism e.g., tissue extracts, tissue culture,
.animal models, etc. before finally seeking to test its

effect on real human patients during clinical trials.
ŽModels do not represent reality completely if

they did, they would be the reality they are to
.represent . This is, in part, by design and for the

purposes mentioned earlier. The representation is
also, in part, incomplete because one does not know
andror cannot economically capture all the attributes
of the real situation, and so could not transfer them
into a model even if one wanted to. The incomplete-
ness of a model is a source of unexpected errors
when a given model being used in testing is replaced
by a different model or by the real context or object

Ž .for the first time Tyre and von Hippel, 1997 . As an
illustration, consider the airbag inflation example
given earlier. If the gas used to inflate the airbag had
been toxic, and the various experimental apparatus

used to test the airbag had not been capable of
detecting this factor, the problem would have been
detected as an unexpected error only when real
airbags were deployed in the real use environment.

2.2. Parallel and serial strategies for experimenta-
tion

Researchers engaging in problem-solving via ex-
perimentation generally do not expect to solve a
problem via a single experiment, and so often plan a
series of experiments intended to bring them a solu-
tion to their problem in an efficient manner. The
strategy they choose is in part a function of the
information they have regarding the topography of
the ‘value landscape’ which they plan to explore

Žwhen seeking a solution for their problem Alchian,
. 11950; Baldwin and Clark, 1997a .

A value landscape can be visualized as a flat plain
with one or more hills rising from it. The total
landscape represents the arena that the experimenters
plan to search as to identify an acceptable solution to
their problem. The probability of finding a solution
increases as one ascends the ‘hills’ in the landscape,
and so the experimenters’ goal is to devise a series
of experiments that will enable them to identify and
explore those hills in an efficient manner. Real-world
experimenters may not have much information re-
garding the value landscape they plan to explore
when they begin their work—and may even abandon
one landscape and switch to another as their work

Žproceeds. Explorations of the specification of
‘well-structured’ problems have shown that
problem-solvers often may pursue a solution to a
problem across a range of value landscapes rather
than simply seeking to search a given landscape in

1 The concept of a ‘value landscape’ is related to the study of
evolutionary biology which regards fitness landscapes as the

Ždistribution of fitness values across a space of entities Kauffman
.and Levin, 1987; Wright, 1932 . More recently, fitness landscapes

have been used in the study of organizational structure and
Žstrategy in the context of changing environments Bruderer and

.Singh, 1996; Tushman and O’Reilly, 1996; Levinthal, 1997 . In
order to distinguish between biological evolution and the design
and experimentation process, we instead use the term ‘value

Žlandscape’ for the remainder of the paper for a good explanation
of fitness and value landscapes and their respective differences,

.see Baldwin and Clark, 1997a .
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2 .an efficient manner. Nonetheless, experimenters’
expectations regarding the topography of the value

Ž .landscape s they have chosen are central to their
construction of efficient experimental strategies.

As an illustration, consider the choice between a
strategy of serial experimentation vs. parallel experi-
mentation. When identification of a satisfactory solu-
tion to a problem involves more than one trial-and-
error experiment, the information gained from a

Ž .previous experiment s may serve as an important
input to the design of the next one. Experiments
which incorporate learning derived from other exper-
iments in a set are considered to have been con-
ducted in series. Experiments that are conducted
according to an established plan that is not modified
as a result of the finding from other experiments are
considered to have been conducted in parallel. For
example, one might carry out a pre-planned ‘array’
of experiments, analyze the results of the entire
array, and then carry out one or more additional

Ž .verification experiments Montgomery, 1991 . The
experiments in the initial array are viewed as being
carried out in parallel, while those in the second
round are carried out in series with respect to that
initial array.

Suppose that the problem at issue is to deduce the
correct combination for a combination lock. Good
locks may have 106 or more possible combinations,
of which only one is correct. They are also designed

Žso as to give an ‘experimenter’ in this case, a
.robber no indication as to how close he or she may

be to the correct combination. That is, they are

2 Well-structured problems have value landscapes for which
one can precisely specify a process of trial and error that will lead

Žto a desired solution in a ‘practical’ amount of time Reitman,
.1965; Simon, 1973; Pople, 1982 . For example, a ‘traveling

salesman’ problem of ‘a size amenable to practical computation’
is well-structured, because one can precisely specify a generator
of alternative solutions and a solution-testing procedure that are

Žguaranteed to eventually identify the best solution. A traveling
salesman problem involves determining the most efficient itinerary
for a salesman who must physically visit each of a given list of

.cities. A real-world problem-solver facing a traveling salesman
problem may solve this problem as given or may decide to modify

Ž .it—thereby creating a new value landscape s to explore. For
example, the problem-solver might modify the original problem
by deciding to consider the option of contacting customers in the
specified list of cities by using the Internet rather than by arrang-
ing physical visits by a single salesman.

designed to display a value landscape that is abso-
lutely flat for all combinations except the correct
one, which can be visualized as rising up from the
landscape like a narrow tower with vertical sides. In
a value landscape with this topography, a parallel
experimentation strategy would be the fastest, al-

Žthough not necessarily the most efficient choice see
Ž . Ž .Table 1, strategies a and c and related discussion

.below . This is because in this landscape configura-
tion, each failed trial provides very little information
that would be of use in a serial experimentation
strategy—only the information that ‘the combination
you just tried is not the correct one.’ 3

In contrast, suppose that the value landscape is a
hill with only a single peak and sides that extend to

Žall edges of the landscape. This is the shape, for
example, of the value landscape in the children’s
game in which a child is guided to a particular spot
via a feedback from other children who say ‘warmer’

.each time a step is taken towards that spot. In such a
case, a strategy of serial experimentation may be the
most efficient choice, because the information gained
from each step taken is so useful in guiding the
direction of the next trial step that the correct solu-
tion is often found after only a few trials.

The relative efficiency of experimentation strate-
gies can be estimated using what is known about the
topography of the solution space, and what is known
about the time and money costs associated with
generating and testing alternatives in the solution
space. Consider the following very simple search
model in which the topography of the value land-
scape is known to consist of n points and to have the
configuration described in the lock example dis-

3 Ž . Ž .Simon 1969 , p. 206 uses a similar example in explaining
problem-solving as natural selection, noting that the example was
originally supplied by W. Ross Ashby. ‘‘Suppose that the task is
to open a safe whose lock has 10 dials, each with 100 possible
settings, numbered from 0 to 99. How long will it take to open the
safe by a blind trial-and-error search for the correct setting? Since
there are 10010 possible settings, we may expect to examine about
one-half of these, on the average, before finding the correct one
w x. . . . Suppose, however, that the safe is defective, so that a click
can be heard when the dial is turned to the correct setting. Each
dial can now be adjusted independently and does not need to be
touched again while the others are being set. The total number of
settings that has to be tried is only 10=50, or 500.’’
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Table 1
Ž .A comparison of different experimentation strategies each trial consists of a generate and test step

Massively parallel experimentation is particularly beneficial if the value of time is highly relative to the cost of an experiment. Real-world
experimentation usually involves parallel and serial strategies, where the optimal combination is driven by many factors such as the cost and
time to generate and test an alternative, the topography of the solution space, and prior knowledge of the experiment

cussed above—flat except for a single point repre-
senting the correct solution. 4

Ž Ž .A parallel experimentation strategy strategy a
.in Table 1 would require all experiments and their

4 Much more sophisticated models of search have been applied
to the study of the R&D and design process. See, for example,

Ž . Ž .Nelson 1961 , Abernathy and Rosenbloom 1968 , Evenson and
Ž . Ž . Ž .Kislev 1976 , Weitzman 1979 , Roberts and Weitzman 1981 ,

Ž . Ž .Nelson and Winter 1982 , Nelson 1982 , and Baldwin and Clark
Ž .1997b . The purpose of our simpler model is to help the reader in
understanding the cost and time trade-offs between parallel and
serial experimentation strategies.

tests to be done at the same time. Thus, one would
not be able to incorporate what one has learned from
1 trial and apply it to the next trial. While this
approach results in a very high number of experi-

Ž .ments n , it also reduces the total development time
significantly as all experimental trials are done in
parallel. Thus, in the case of this example, massively
parallel experimentation would be the costliest but
also the fastest strategy.

In contrast, a serial strategy applied to this sample
problem would allow one to learn from each experi-
mental trial and—equipped with this new knowledge
—carefully select the next one. As shown in Table 1



( )S. Thomke et al.rResearch Policy 27 1998 315–332320

Ž . Žc , a strategy even with minimal learning i.e., not
.repeating a trial that has failed can halve the total

number of experiments required on average, but
would dramatically increase total development time
relative to the purely parallel approach. 5

Of course, if there is the opportunity for greater
learning from each trial, the number of trials in the

Žseries likely to be required to reach the solution and
.therefore the total elapsed time is further reduced.

For example, consider a very favorable learning
scenario where the n trials are arranged on a linear

Ž .scale e.g., n different pressure settings and that
after each trial, one could learn whether to move up
or down on that scale. Thus one would effectively
reduce the search space by 50% after each experi-
mental cycle and rapidly progress towards an opti-
mal solution. An experimenter would start with nr2
Ž .the midpoint and move to either nr4 or 3nr4,
depending on the outcome of the first experiment,
and continue in the same fashion until the solution is
found. A real-world example for such a search can
be found in the practice of system problem identifi-
cation: very experienced electronic technicians tend
to start in the middle of a system, find the bad half,
and continue to subdivide their search until the prob-
lem is found. One can easily see that the expected
number of trials until success using such a serial

Ž .strategy with the kind of learning described can be
reduced to log n—a dramatic reduction in cost.2

However, total development time would exceed that
Žof the purely parallel strategy by the same factor see

Ž .. 6Table 1, strategy b .
Real-world experimentation strategies can be

5 Assume that the set of possible experimental trials is of size
n. After an alternative is generated, a screen tests if it is the

Ž .solution there exists only one solution in n . If the experimental
trial results in a solution, the experimenter stops. If the experimen-
tal trial is unsuccessful, the experimenter randomly generates
another alternative and continues. The experimenter only learns
which trials have failed and thus should be avoided going forward
—i.e., the experimental learning is minimal.

6 A related strategy is the renowned Newton’s method that is
widely used in numerical analysis and was first introduced in
Newton’s Principia Mathematica to solve a cubic polynomial.
The method’s iterative and sequential search, known for its rapid
convergence, is guided by knowledge of the underlying function
and its gradient to quickly find an accurate estimate of the

Ž .numerical value being sought Gerald and Wheatley, 1984 .

much more complex than our simple model, and will
often contain a combination of serial and parallel

Ž .approaches see, for example, Ward et al., 1995 . As
we will see in the discussion of drug discovery in
Section 4, pharmaceutical firms typically employ
both serial and parallel experimentation in the search
for promising candidate drug molecules. Factors such
as cost and time of generating and testing alterna-
tives, and knowledge of the topography of the solu-
tion space are affecting the degree to which paral-
lelism is employed in the drug discovery process.

3. Advances in experimentation and problem-solv-
ing and their implications for firms

The methods and tools available to help solve
many types of problems are rapidly changing and
improving. These advances are affecting all of the
elements of the experimentation process that have
been described in Section 2. That is, they are rapidly
reducing the cost and time involved in designing and
executing and analyzing many types of experiments,
and are also affecting the type of experimentation
strategies that may be most effective for an experi-
menter. In this section, we first illustrate the rapid
advances being made in experimental methods by
noting the rapid evolution 7 of experimentation via
computer simulation. We will next discuss the impli-
cations that such advances can have for the competi-
tive position of firms.

3.1. AdÕances in methods for experimentation and
problem-solÕing

There is no general index that documents the rate
of advance in problem-solving methods and tools.
However, those with a professional interest in these
matters generally judge that the rate of change today
is very rapid. Advances in some fields, such as
computer simulation, are applicable to a wide variety
of subject matter. Others, such as the scanning tun-
neling electron microscope, are germane to only a

7 We regard the evolution of technologies and methods as a
decentralized, adaptive process that can be characterized by inter-
play between users and developers. Because both derive eco-
nomic value from advances in areas such as simulation, they tend
to reinforce each other and thus accelerate the overall evolution of
such novel technologies and methods.
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narrow range of applications—although the range of
application seen for a given technique often broadens

Ž .significantly over time Rosenberg, 1982 . The reader
may find a brief overview of the rapid evolution of
computer simulation techniques to be a useful way to
gain a feeling for what we mean by ‘rapid advances
in methods and tools’ in the case of a generally
applicable tool. Later, in Section 4, we will provide a
detailed description of the nature of and impact of an
advance with a narrower range of application—com-
binatorial chemistry.

As was noted earlier, experimentation via com-
puter simulation involves representing experimental
objects and experimental environments in digital
form, rather than in the form of physical objects
tested within physical environments. Then, their in-
teraction is within a computer in a type of virtual
experiment. The advantages of substituting virtual
experimentation via a computer for experimentation
with real physical objects can be very significant.
For example, studying automobile structures via real
car crashes is clearly quite expensive and time-con-
suming—a crash prototype can cost in excess of
US$100,000 and may take up a year to build and
test. In contrast, once the proper digital models have
been created, a virtual car crash can be run again and
again within a computer under varying conditions at
very little additional cost per run. Furthermore, con-
sider that a real car crash experiment happens very
quickly—so quickly that the experimenter’s ability
to observe details is typically impaired, even given
high-speed cameras and well-instrumented cars and
crash dummies. In contrast, one can instruct a com-
puter to enact a virtual car crash as slowly as one
likes, and can zoom in on any structural element of

Ž .the car or minute section of a structural element
that is of interest and observe the forces acting on it
and its response to those forces ‘during’ the crash.
Thus, computer simulation may not only decrease
the cost and time of an experimental cycle but can
also increase the depth and quality of analysis, lead-
ing to improved learning and ultimately products of

Ž .higher quality Thomke, 1998 .
Ž .The steady and really quite spectacular improve-

ment in the capabilities of digital computers over the
past few decades has made it possible and desirable
to carry out more and more experiments via com-
puter simulation, rather than via physical experimen-

tation. Computer simulation is today being used as a
substitute for or supplement to physical experimenta-

Žtion in fields ranging from the design of drugs e.g.,
.rational drug design to the design of mechanical

Ž .products e.g., finite element analysis , to the design
Žof electronic products e.g., simulation of digital

.circuitry , and to the analysis of financial positions
Ž .e.g., simulation of novel financial instruments . The
ability to usefully substitute a simulation for a ‘real’
experiment requires, of course, more than the devel-
opment of advanced computer equipment. It also
requires the development of simulation models that
are accurate from the point of view of a given
experimental purpose. Often, a simulation model will
not be fully accurate in ways that later turn out to
matter. When this is recognized, virtual and physical
experiments may be conducted in some combination
in order to combat this source of error. For example,
auto designers will supplement data gathered from
virtual car crash experiments with data from real
crash experiments using real cars, in order to assure
themselves that the results of the virtual experiments
also hold in the real world.

At the same time, of course, methods for conduct-
ing physical experiments are also advancing. For
example, significant advances are being made in
reducing the costs and time of building the various
types of prototypes. Complex three-dimensional ob-
jects used to require days or weeks of work in a
machine shop to fabricate. Many such shapes can
now be made rapidly—in very few hours—by using
computer-controlled machining equipment andror
equipment for creating objects via ‘three-dimen-

Ž .sional printing’ Sachs et al., 1992 . This also applies
to physical prototypes of complex electrical circuitry
—custom integrated circuits—used to take months
to create via ‘full custom’ methods, and weeks to
create via ‘Application-Specific Integrated Circuits’
Ž .ASIC technology. Now, designers can create cus-
tomized circuits in minutes at their desks or lab
benches using the so-called ‘Field Programmable

Ž . ŽGate Arrays’ FPGAs Thomke, 1997; Villasenor
.and Mangione-Smith, 1997 .

3.2. Impact of changes in experimental methods on
firm competitiÕeness

The adoption of more effective experimental
methods for problem-solving and the development of
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new products and services, such as those just de-
scribed, can lead to significant competitive advan-
tages for adopting firms relative to rivals if novel
techniques that offer such advantages are not rapidly

Ž .picked up by rivals as well. Or, as Barney 1986
Ž .and Wernerfelt 1984 put it with respect to core

competencies: a core competence can be a source of
long-term competitive advantage for a firm if it is
difficult or impossible to buy or sell in the available
factor markets, and if it is difficult to replicate.

We argue that the new and more effective experi-
mental methods and techniques that are rapidly
emerging are indeed often difficult to buy and sell,
and difficult to replicate as well, and can therefore
serve as a significant source of long-term competi-
tive advantage for innovators and early adopters. The

Ž .reason is that new methods require 1 the transfer of
significant amounts of new information to the adopt-

Ž .ing firm, including new skills, and 2 some reorga-
nization of a firm’s R&D activities as well.

The requirement that new information must be
transferred to a firm adopting a new experimental
technique is in itself a barrier to adoption in many
instances, because information is often costly to
transfer to a new site in a form usable by a given
information seeker, that is, sticky information.
Transfer costs are affected by attributes of the infor-

Ž .mation itself e.g., how the information is encoded ,
and also by attributes of and choices made by infor-

Žmation seekers and information providers Arora and
Gambardella, 1994; Cohen and Levinthal, 1990;
Griliches, 1957; Mansfield, 1968; Nelson, 1982;
Pavitt, 1987; Rosenberg, 1982; Teece, 1977; von

.Hippel, 1994 .
Thus, consider that only some of the information

associated with the ability to execute new experi-
mental methods may be embodied in equipment that
can be purchased and installed by an adopting firm
—a relatively easy form of transfer. For example, a
firm can buy computers and computer programs that
can be used to do experiments via computer simula-
tion, but new equipment and new software provide
only a portion of the information a firm needs to
actually become competent at performing a new
experimental method. Typically, new skills and ex-

Ž .pertise are also needed, and, as Polanyi 1958 has
pointed out, skill and expertise are often encoded
within an expert’s mind as tacit information that is

difficult to transfer to another. For example, in a
study of biology lab practising an experimental
method known as cell fusion, Barley and Bechky
Ž . Ž .1994 pp. 98–99 reported that ‘‘ . . . experienced

wresearch support specialists and technicians carrying
xout the cell fusion work made use of signs that

could not be found in textbooks, and that were
difficult to define except ostensively. Partially for
this reason, practices successful in one lab often
failed in another unless technicians from the first
trained technicians from the second. . . . ’’

Adopting novel experimental methods may also
require considerable change in the organizational
arrangements prevailing in the adopting firm. As

Ž . Ž .Morison 1966 and Schon 1967 have pointed out,¨
organizations are often built up around and adapted
to existing technologies. When this is so, changes in
technologies may require changes to organizational
structures and routines. As an illustration, suppose
that a firm wishes to replace some physical experi-
mentation methods being carried out in its labs with
computer simulation methods. To do this, it must
typically hire new kinds of people and also reorga-
nize the relationships between the various specialists
who jointly carry out the experiments. In its existing
organizational arrangements designed for physical
experimentation, for example, the firm might have
routines in place that enable researchers to work with
design engineers and modelmakers to design and
build the experiments that they wished to run. Next,
the procedures might dictate that the completed ex-
perimental apparatus be transferred to experts at
specialized test facilities who would actually run the
experiments, collect the resulting data, and then sup-
ply that data to the researcher for analysis. In con-
trast, experimentation via computer simulation would
require quite different organizational routines. In
some cases, these would enable the researcher to do
the entire experimental cycle in his or her own lab.
In other cases, they might facilitate collaborative
arrangements between the researcher and various
types of experts not previously employed by the firm
who specialize in different aspects of computer simu-
lation.

With respect to the difficulty of achieving such
organizational change, we note that Holmstrom and

Ž .Tirole 1991 have argued that organizational ar-
rangements cannot serve as sources of enduring
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competitive advantage because they can be easily
replicated. However, much of the literature on orga-

Žnizational change suggests otherwise see, for exam-
ple, Milgrom and Roberts, 1990; Henderson and

.Cockburn, 1994 . Thus, Henderson and Cockburn
Ž .1994 , in a study of cardiovascular drug discovery,
reported that organizational capabilities found asso-
ciated with improved productivity at this type of
research task are in fact often very difficult to trans-
fer from firm to firm. 8 Further, they note that such
arrangements can have an important impact on re-
search productivity. In their study, about 30% of the
observed variation in the ‘productivity’ of firms in

Ždrug discovery number of drugs discovered per
.R&D dollar invested was due to unique organiza-

Žtional capabilities represented by a variety of mea-
sures such as to the degree to which the firm actively
manages the integration of knowledge across disci-

.plinary and firm boundaries .

4. Field study: the impact of new drug discovery
methods on pharmaceutical drug development

To this point, we have described the general
nature of problem-solving via experimentation in
R&D and related parallel and serial strategies, have
observed that methods for accomplishing this task
are evolving rapidly, and have argued that compe-
tence at problem-solving via experimentation can be

8 Ž . Ž .Henderson 1994 pp. 624–626 illustrates difficulties associ-
ated with replicating organizational capabilities associated with
better performance at drug discovery by presenting examples
experienced by firms in their sample. Thus, there was a period
when leading-edge drug discovery processes were shifting from
simple mass screening of compounds for possible medicinal ef-
fects to a more precise form of research based on an understand-
ing of a drug’s mechanism of action. This change was being
driven by the academic research community. The drug firm
‘Alpha,’ which had long-term ties to the academic community and
which employed leading-edge researchers who were accepted as
peers in that community, had no difficulty in quickly adopting the
new approach to drug discovery. In contrast, the firm ‘Beta,’
which had not had a practice of employing scientists known to
and respected by the academic community, found it very difficult
to make the change. For example, they found it difficult to hire
‘better’ people from academia who were experts in the new
approach, because they did not have a reputation as a leading-edge
place to work.

important with respect to the competitiveness of
firms that perform R&D. In this section, we develop
these points further via a field study of a recent
improvement in experimental methods used in the
drug discovery process–‘combinatorial chemistry’.
We begin by describing the serious drug develop-
ment problem currently facing pharmaceutical firms.
Next, we describe the drug discovery process and
then, we describe combinatorial chemistry. Finally,
we describe a research project that clearly illustrates
the impact that this new method can have on the
drug discovery process—and with it, upon the com-
petitiveness of pharmaceutical firms.

4.1. The product deÕelopment problem facing phar-
maceutical firms

If improvements in problem-solving methods are
important to any firm, they should certainly be im-
portant to firms in the pharmaceutical industry. On
the one hand, pharmaceutical firms face many poten-
tially profitable opportunities to create new drugs to
cure or ameliorate diseases ranging from cancer to
heart disease, particularly if firms manage to receive
patent protection and reach the market before their
competitors do. Markets for new drugs typically
involve US$50–400 million in annual sales, and can
sometimes be in billions as in the case of Zantac, a
stomach acid inhibitor drug for ulcer treatment. On
the other hand, the drug development process is
currently one of the most time-consuming and costli-
est product development processes in any industry.

A widely cited study of pharmaceutical drugs
developed between 1972 and 1987 found that the
expected capitalized development cost per marketed

Ž .drug was on the average US$230.8 million 1987
Ž .DiMassi et al., 1991 , with total development times
well above 10 years. Various other studies have
shown a trend that has caused much concern in the
pharmaceutical industry: the cost and time of new
drug development has increased significantly over

Ž .the last 30 years e.g., DiMassi et al., 1994 . Besides
the impact of lower R&D productivity on firm cost
and profitability, longer development times have also
raised important public policy concerns. As the in-
dustry remains the dominant provider of life-saving
and life-prolonging medicines, it is in the public
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Table 2
Ž . ŽExpected phase costs per New Chemical Entity NCE in mil-

. Ž .alions of 1987 dollars from DiMassi et al., 1991
bTesting phase Uncapitalized Mean phase Capitalized

cŽ .expected cost length months expected cost

Preclinical 65.5 42.6 155.6

Long-term animal 5.3 33.6 8.2
Other animal 0.4 33.6 0.7
Phase I 9.3 15.5 17.8
Phase II 12.9 24.3 21.4
Phase III 20.2 36.0 27.1
Total 113.6 230.8

b Ž .The New Drug Approval NDA review period was estimated to
last 30.3 months.
cCosts were capitalized at a 9% discount rate.
aAll costs were deflated using the GNP Implicit Price Deflator.
A 23% clinical approval rate was utilized.

interest to have promising new drugs available to
Ž .patients as quickly as possible Savello, 1996 .

The complete drug development and approval
process involves three phases. It begins with a pre-
clinical research phase devoted to the discovery and
optimization of one or a few ‘lead’ chemical com-
pounds that appear to hold sufficient promise as
drugs to merit investment in clinical testing. Phase
II, clinical development, consists typically of three
clinical phases to determine and document the safety
and efficacy of the proposed drugs. The final phase
Phase III, involves regulatory New Drug Approval
Ž .NDA review processes of the clinical trial out-
come. The average cost and duration of preclinical
and clinical development for drugs developed be-
tween 1972 and 1987 are provided in Table 2.

4.2. The drug discoÕery process

Drugs achieve their effect by binding with very
specific molecular receptors or enzymes or biologi-
cally important molecules that are present in the
human body or onrin disease-causing agents such as
bacteria, fungi, and viruses. The goal of drug discov-
ery or drug design is therefore to discover or create a
molecule that will in fact bind to a particular, say,

Žreceptor with a required degree of tenacity binding
.affinity , and that will, at the same time, not bind to

other receptors that may be structurally similar but
have different functions.

The drug discovery process can involve either or
Ž .a combination of two basic approaches. 1 One can

start with little or no knowledge about the structure
Ž .of a disease target receptor, enzyme, molecule

associated with a particular disease, and simply try
out many candidate molecules until one finds one
that happens to bind properly with the target recep-

Ž .tor. 2 One can strive to determine the structure of
the relevant receptor with biophysical methods, and
then attempt to design or select a molecule that will
bind to it.

Until the 1970s, methods of drug discovery neces-
sarily relied on the first of these two approaches
because the technical ability to determine the molec-
ular structure of a protein receptor did not yet exist.

ŽResearchers at early pharmaceutical firms often sub-
.sidiaries of chemical manufacturing firms imple-

mented this approach by setting up a systematic
trial-and-error drug discovery system known as the
‘mass screening’ system, which is still used today.

The mass screening system begins with the selec-
tion or design of a ‘screen’—e.g., a disease-causing
bacterium or an isolated receptor that is known to be
associated with the disease under study. ‘Masses’ of
chemical compounds are then applied to this screen
Ž .one at a time , with the goal of identifying com-
pounds that cause the screen to display a desired

Žeffect e.g., killing of the disease-causing bacterium:
.evidence of binding to the receptor .

Traditionally, there have been two different
sources of input materials to the mass screening
process. The first source is proprietary archival li-
braries of known chemical compounds that have
been collected by chemical and pharmaceutical firms
over the years. A given major firm might have an
archival library of perhaps half a million known
compounds. The second source is extracts of plants,
microorganisms, and animals, each of which may
contain perhaps up to 100,000 unknown chemical
compounds.

Mass screening proceeds differently depending on
which type of input is used. In the case of archival
libraries, the known compounds are tested against
the disease target screen one by one, and the effect
of each on the screen is observed. In the case of
natural extracts, the entire extract is tested against
the screen. If a desired effect is observed, the com-
pound responsible for that effect must then be iso-
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lated via a complex series of fractionations and
retestings.

As an illustration for the natural compound pro-
cess, consider the development of antibiotics based
on ‘magainins.’ When researchers noticed that frogs
living in bacteria-contaminated water did not appear
to get skin infections, they suspected that a new and
useful antibiotic compound in a frog’s skin might be

Ž .involved Zasloff, 1987 . To identify it, they began
by grinding up frog skin and subjecting the whole
mixture—consisting of literally hundreds of thou-
sands of different compounds—to mass screening
tests for antibiotic activity. When these tests did
indicate antibiotic activity, they next had to identify

Ž .which compound s in the complex mixture was
Ž .were the source of that activity. This was done by
biochemical separation of the compounds found in
frog skin into fractions, followed by a test of each
fraction for the presence of antibiotic activity. The
active fraction was then subjected to further cycles
of fractionation and test until finally, the active
compound was isolated.

When an active compound is finally identified via
mass screening, it will generally not meet all of the
criteria required to make it a ‘lead’ candidate for a
new drug. For example, it may display the needed
medical effect very powerfully, but may display
unacceptable side effects at the same time, such as
toxicity or mutagenic effects in animals, or may not
become available in the bloodstream after ingestion
or injection. Therefore, the lead optimization process
in the drug discovery process is to create and test a

Ž .number of variations analogs of the originally iden-
tified molecule in order to find one or more that
appears to have all the attributes needed for a suc-
cessful new drug. One lead compound is then ad-
vanced into the clinical development phase where its
effects are tested on humans. Experimentation with
analogs is carried out in series, with some elements
of parallelism: a few molecules are created and
tested during each round with the objective of learn-
ing as much as possible between rounds—a strategy
discussed in Section 2.2.

At this point, we should note that the traditional
process used to create analogs to a proposed drug in
order to create a lead drug compound is typically a
very costly and time-consuming matter. In order to
create analogs to the original compound, medicinal

Žchemists specialized organic chemists employed by
.pharmaceutical firms maintain the basic structure of

that compound, but add, exchange, or remove chemi-
cal groups from it. On the average, it takes 7 to 10
days and approximately US$7500 to synthesize one

Ž .such analog Longman, 1993 . According to the
statistics of the Centre for Medicines Research, the
average American pharmaceutical company synthe-
sizes approximately 6100 chemical compounds for
each successful drug that makes it to the market

Ž .place Halliday et al., 1992 . This amounts to an
average of US$46 million for the creation of analogs
alone, with a total time requirement of about 170
personryear.

The reason for the necessity to develop so many
potential solutions to the receptor problem is because
many drugs must be precisely tailored to sharply
discriminate between very similar receptors. For ex-
ample, researchers working to develop a drug for
Alzheimer’s disease are targeting a particular mus-
carinic receptor located in the brain. However, five
subtypes to this muscarinic receptor are known to
exist in the gut and elsewhere, and the desired drug
must not affect these. Compounds displaying the
needed selectivity can be very difficult to find with-
out extensive creation of analogs.

4.3. Rational drug design and combinatorial chem-
istry

In this century, the knowledge in chemistry, biol-
ogy, and the molecular basis of disease has increased
exponentially. In the beginning of the 1980s, ad-
vanced methods of protein structure determination
and computer-supported molecular modeling became
the focus of the pharmaceutical industry. This new
technology was thought by many in the industry to
be sufficiently advanced to allow the creation of a
rational drug design methodology as an alternative
to the traditional medicinal approach to drug discov-
ery.

Pharmaceutical researchers using the rational drug
design approach would use very advanced scientific
methods such as X-ray crystallography andror nu-

Ž .clear magnetic resonance NMR spectroscopy to
determine the three-dimensional shape of a receptor
or an enzyme that they wish to influence with a drug.
They would then enter the structure of this receptor
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into a computer software package containing infor-
mation on the configuration and strengths of the
chemical bonds that can form between atoms. This
software would then allow them to use simulation to
design drug molecules that bind properly to the
target receptor. Real molecules would then be cre-
ated by chemists in the laboratory as specified by the
computer-modeling exercise, and these would be
tested for the desired pharmaceutical effect. Thus,
rational drug design is an example of a strategy that
tries to maximize the amount of learning between
trials and thereby achieve a total reduction in the

Žnumber of laboratory chemical trials as explained in
.Section 2.2 .

However, the ‘rational’ approach to drug design
has proven to be problematic for two reasons. First,
the molecular modeling of a drug requires very
accurate data on the structure of the target receptor,
and the required degree of accuracy is often very
difficult for researchers to attain using present-day
methods. Second, it has been found that the shape of
a target receptor can change dramatically when a
drug is inserted into the receptor’s ‘binding pocket’
Ž .see Fig. 1 . The effect of such ‘induced fit’ shape
changes is that a drug that has been designed to fit a
receptor’s empty binding pocket may in fact not fit
at all. Induced fits between receptor and drug are too
complex to be modeled by present computer simula-
tion tools. As a consequence, rational drug design
has not been proven to be a full replacement for
traditional drug design methods. Instead, computer-
based molecular modeling exercises prescribed by
the rational drug design procedure are still followed

Fig. 1. Illustration of dramatic structural alterations to the binding
pocket of a receptor resulting from the insertion of a drug

Ž .molecule from Stryer, 1995 .

Fig. 2. The rapid increase of scientific publications on combinato-
Žrial chemistry based on a search of the Science Citation Index,

1984–96, a database that covers 90% of the world’s significant
.scientific and technical literature .

up by medicinal chemists who create and test analogs
to the rationally designed compound, just as was
done in traditional drug development.

In the last few years, a new method called combi-
Ž .natorial chemistry has emerged very rapidly Fig. 2 ,

primarily due to its impact on the underlying experi-
Ž .mentation economies Plunkert and Ellman, 1997 .

Combinatorial chemistry makes the synthesis of pro-
posed drug compounds and analogs radically faster

Žand cheaper the basic principle of combinatorial
chemistry and the underlying process technologies

.are described in the Appendix A . For example, cost
reductions from about US$7500 per compound
Ž .traditional medicinal chemistry to perhaps US$1 to
US$10 per compound have been reported, with re-
ductions in preparation time of comparable magni-
tude. While a skilled medicinal chemist required 7 to
10 days to create a single analog using traditional
methods, a chemist can now use automated equip-
ment and combinatorial chemistry techniques to cre-
ate thousands of analog compounds—each precisely
identified by an attached chemical ‘tag’—in a matter

Ž .of days, Franke, 1995 . Thus, as we will see in
Section 4.4, the dramatically different economies of
combinatorial chemistry are inducing drug develop-
ers to shift to mixed experimentation strategies with
a strong emphasis on parallelism, while at the same
time, reducing total development time dramatically
Ž Ž . .similar to strategy a in Table 1 .

The impact of this new capability on the drug
discovery promises to be very significant. The
amount of information that must be acquired about
the structure of a receptor via computer modeling,
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crystallographic studies, etc., can be greatly reduced
with the application of combinatorial chemistry
methods, because these can be used to create literally
hundreds or thousands of compounds that might fit

Žthe receptor. The most promising that is, the ones
.with the best desired influence on the target receptor

can then be identified via a mass-screening process.
Next, one can create a new library of hundreds or
thousands of analogs for each of these ‘round one
winners’ within a few days or weeks. One can then
repeat this screening, selection and analoging process
until one gets the compounds displaying an excellent
level of binding to only the target receptor. Because
one has been able to create and test so many analogs,
one can generate a ‘lead’ compound more quickly
and more cheaply. Even more important, perhaps, is
that one can identify a better lead compound to
carry forward into the very expensive clinical devel-
opment phase.

4.4. Field study: drug discoÕery at Pharmacopeia
Õia combinatorial chemistry methods

We next illustrate the impact combinatorial meth-
ods can have on the economics and experimentation
strategies of the drug discovery process by describ-
ing a research project carried out by Pharmacopeia
of Princeton, NJ. Pharmacopeia is a well-known
leader in the novel field of combinatorial chemistry

Ž .using solid support libraries see Appendix A . We
compare the costs and outcomes that were achieved
by using combinatorial chemistry in this case vs.
estimated costs and outcomes that would have been
achieved by using more traditional methods. We find
that traditional methods would have been dramati-
cally slower and costlier in this case—and would
probably only have produced ‘lead’ drug candidates
with little chance of clinical success. The high cost
and time required to create and test compounds using
traditional methods would have severely limited the
number of compounds considered—and thus re-
duced the related search space—and would have
focused the search to a region with the least promis-
ing molecules.

The drug discovery project we report upon deals
with the identification of lead drug candidates to be
used in the treatment of an important eye disease
Ž .glaucoma that affects 1 in 100 adults. Glaucoma is

a wide-spread human disease responsible for im-
paired vision and eventual blindness. To document
this project, we interviewed Pharmacopeia’s leading
scientists and executives. These interviewees pro-
vided us with information about Pharmacopeia’s
combinatorial chemistry technology in general and
detailed information on a drug development case in
particular. Personal interviews were followed with a
detailed questionnaire that provided us with data on
the efficiency of the drug discovery process used in

Žthis project for detailed scientific description of the
.underlying chemistry used, see Burbaum et al., 1995 .

Glaucoma is caused by a build-up of pressure
within the human eye which in turn causes damage
to optical nerve cells. Scientific research has shown
that excessive pressure can be treated with the aid of

Žwhat is known as the ‘diuretic’ effect i.e., a reduc-
.tion of liquid causes a decrease in pressure . It is also

known that a certain group of drugs—known as
carbonic anhydrase drugs—can precisely cause this
diuretic effect, leading to stabilized pressure within
the eye and long-term preservation of vision. The
glaucoma project’s objective was to find sulfo-
namide compounds that ‘lock’ into and inhibit the
function of the human carbonic anhydrase enzyme
Ž .hCAI which regulates the production of liquid in

Fig. 3. Affinity of compounds for human and bovine isozyme.
Each of the points represents a compound tested. The abscissa and
ordinate indicate the affinity of the compounds for the human and
bovine isozyme, respectively. Note that, from the large number of

Žcompounds screened, only three compounds per receptor shown
.as large squares displayed the desired discriminatory capability.
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the human eye, thus leading to a reduction of both
pressure and damage to optical nerve cells. As it is
usually the case with pharmaceutical drugs, a
promising lead compound had to discriminate against
enzymes that have very similar structures in order to
avoid unacceptable side effects.

In Pharmacopeia’s case, a promising lead com-
pound that might guide the way to an eventual new
drug had to interact with hCAI, but discriminate

Ž .against the bovine isozyme bCAII —two very simi-
Žlar receptors. The bovine isozyme acts as a starting

model for hCAII which is the human isozyme; once
a drug that discriminates against bCAII is found, it
acts as an excellent lead for discrimination against

.the human isozyme hCAII . The sulfonamide com-
pounds identified served as leads for additional
phases in the drug development process. Identifying
suitable lead compounds was very difficult because,
as was learned later, only 3 compounds out of thou-
sands tested eventually displayed the searched-for

Žselectivity see Fig. 3; only compounds close to the
abscissa and ordinate can discriminate against the

.respective enzymes . Failure to discriminate against

enzymes other than hCAI, however, was known to
cause serious side-effects such as difficulties in
breathing, convulsion, muscle cramps, and trem-
bling.

4.5. R&D efficiency of combinatorial chemistry Õs.
traditional drug discoÕery methods

Lead compounds for the glaucoma project were
identified using the combinatorial chemistry methods
we described earlier. Data on development time, cost
and experimentation strategies were collected for the

Ž .actual mode used combinatorial chemistry and an
estimated case using traditional medicinal chemistry

Ž .was constructed Table 3 .
The estimated case was based on considerable

experience with projects that were comparable in
complexity and degree of difficulty but were devel-
oped using the traditional medicinal approach. A
‘rational’ drug design approach would have focused
on reducing the number of compounds tested in the
traditional approach by maximizing the learning be-
tween successive rounds—but at considerable addi-

Table 3
Comparing the parallel combinatorial chemistry approach with serial traditional medicinal chemistry in the discovery of promising lead
compounds for the treatment of glaucomaa

bProject variable Combinatorial approach Traditional approach
cŽ .1 Total development time 3.5 months 5 years

cŽ .2 No. of chemists needed 4 15
dŽ .3 No. of compounds tested ;9000 ;3750

e fŽ . Ž . Ž .5 No. of serial rounds 1 100 250 max.
Ž .6 No. of compounds per round ;9000 ;38
Ž .7 Cost of screen per round US$10,000 US$10,000

gŽ . Ž .8 Total cost chemists only US$167,000 US$18.75 million
hŽ .9 Total cost per compound US$19 US$5000

b Based on estimates from developers who are very experienced with medicinal drug development.
c Typical time and resources planned for a project of the complexity and strategic importance equal to that of the combinatorial chemistry
approach reported in this table.
dA skilled chemist can prepare 50 compounds per year.
eDuring a short second round, 220 compounds were prepared over a 2-week period. The compounds were a subset of the first round and did
not contain new members.
f While 250 rounds is theoretically possible, it does not allow sufficient time for learning and analysis between rounds. Thus, 100 rounds is a
realistic number.
gApproximately US$250,000 per year is needed to pay a skilled chemist. In the combinatorial approach, chemists were only needed for 2
months.
hSince the marginal cost of preparing additional compounds using combinatorial chemistry is negligible, a 10-fold increase in the number of
compounds prepared would result in a per unit cost of approximately US$2.
a In the case of both methods the project was followed by further refinements of the lead candidates in order to increase the probability of
clinical success.
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tional cost and time. Thus, it is unclear whether
current ‘rational’ drug design would have improved
the efficiency and output of the traditional approach
at all. The data from Table 3 show not only that the
combinatorial approach was more cost effective but
the parallel nature of experimentation also led to a
dramatically lower discovery lead time, allowing the
firm to move to the clinical phase much earlier than
the more serial traditional approach. It also identified
lead compounds that showed a high degree of selec-
tivity and thus much promise of success for the next
development phases. In fact, interviewees strongly
felt that with the cost and time required using tradi-

Ž .tional medicinal methods, 1 it would have been
unlikely that the project had been pursued; and if

Ž .pursued, 2 it was nearly impossible to identify a
promising lead compound with the required selectiv-
ity.

Of course, combinatorial chemistry does not offer
the same advantage for all projects, and is currently
not applicable at all to some kinds of molecules.
Thus, the method is not now very effective for the
kinds of complex molecules often dealt with in
studies of natural compounds. However, combinato-
rial chemistry’s area of applicability is rapidly ex-
panding and many companies are working on the
conversion of classical organic chemical reactions to
combinatorial systems. Expert interviewees con-
tacted during our case study estimate that the advan-
tages offered by combinatorial methods over tradi-
tional experimental methods, for projects where
combinatorial chemistry is applicable, range from a
10% to an 80% reduction in the cost and time
devoted to lead optimization—and, as was noted
earlier, the development of better quality lead com-
pounds than is customarily accomplished by tradi-
tional medicinal chemistry techniques.

5. Conclusion

In this paper, we have argued that the economics
of problem-solving and the related R&D efficiency
are being radically affected by the use of new and
greatly improved versions of methods such as com-
puter simulation and combinatorial chemistry. We
explained how the introduction of novel methods
could affect both the experimentation strategies

Žadopted by firms e.g., serial vs. parallel experimen-
.tation and the efficiency with which those strategies

can be executed. Via a field study of the impact of
combinatorial chemistry techniques on pharmaceuti-
cal drug discovery, we then illustrated the dramatic
economic changes that can result from the adoption
of novel experimental methods.

We also noted that novel experimental methods
can importantly affect the relative competitive posi-
tion of firms if techniques that offer such advantages
are difficult or impossible to buy or sell in the
available factor markets, and difficult to replicate as
well. Many novel methods require novel skills
andror organizational arrangements to implement,

Žand are likely to meet these criteria. Certainly, as
we explained, it is likely that the methods discussed
in our case, combinatorial chemistry and rational
drug design, meet the criteria. Equipment required
by both are available on the market—but both also
require novel skills and organizational arrangements
that are not easily acquired by firms seeking to adopt

.them.
In sum, we propose that strategies and modes of

experimentation can be an important factor in the
effectiveness of a firm’s innovation processes and its
relative competitive position. We therefore propose
that further studies on this topic may be of interest to
both innovation researchers and innovation practi-
tioners. For example, it would be useful to explore
whether and how differences in the relative effec-
tiveness of firm innovation processes can be traced
to differences in the experimental methods em-
ployed, and the skill with which those methods are
used. It would also be useful to explore the attributes
of experimental methods that convey the greatest
competitive advantage to firms using them. For ex-
ample, it is likely that the methods that are the
hardest to transfer to new users will be the ones that
offer the greatest competitive advantage to method
users—while method sellers are likely to appropri-
ate the most benefit from methods that are easily
transferred.
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Appendix A. Background on combinatorial chem-
istry

Combinatorial chemistry is a very novel experi-
mentation methodology and has evolved over the last
decade. It consists of several new chemical synthesis
strategies for the efficient generation of a large num-
ber of chemical compounds. This large number of
chemical compounds, also called ‘compound li-
braries,’ is subsequently used in pharmaceutical drug
screening projects. The term ‘combinatorial’ origi-
nates from chemical synthesis methods applied to
most of these libraries.

The following is a brief description of the main
process technologies that enable a large number of
parallel experiments to be generated quickly and at
low cost.

Ø Biochip libraries. Photolithographic synthesis
methods are used for the creation of compound

Žlibraries on the surface of a silicon chip Fodor et al.,
.1991 . Up to 10,000 individual compounds can be

synthesized on a silicon chip with a little more than
1 cm2 surface area.

Ø Solid support libraries. Compounds are synthe-
sized on the surface of polymer beads. This method

allows the chemist to attach a certain type of molecule
to glass beads and split the pool of glass beads to

Žcontinue with different synthesis steps see example
.below .

Ø Solution libraries. Mixtures of compounds re-
act chemically in a carefully designed system to
form solution libraries with tens to thousands of
different compounds within a few hours.

Ø Rapid parallel synthesis libraries. Robotic
equipment is custom tailored to dispense chemicals
into individual reaction chambers, carry out many
individual chemical reactions in parallel, and extract
and purify the reaction products automatically. Al-
though this process is significantly slower than the
other three technologies, it results to individually
purified compounds at quantities sufficiently large

Žfor elaborate second round screening. The other
methods require chemical resynthesis which may

.cause a small but significant time delay.
To illustrate how such a combinatorial chemistry

works, consider the process of building solid support
libraries. In the first synthesis phase, polymer beads
are reacted in three different reaction vessels with
chemical A in vessel 1, chemical B in vessel 2 and
chemical C in vessel 3. After the reactions are
completed, all the polymer beads are pooled and
mixed. The mixture is now split into 3 equal portions
and placed in vessels 1, 2 and 3. Each vessel now
contains three mixtures: polymer beads covered with
A, B and C.

In the second phase, Vessel 1 is reacted with
chemical D, vessel 2 is reacted with chemical E and
vessel 3 is reacted with chemical F. The result of this
reaction is as follows:

-vessel 1 contains polymer beads carrying A–D,
B–D, and C–D,

Table 4
Building solid support libraries

Ž .Phase k Vessel 1 Vessel 2 Vessel 3 N

1 A B C 3
2 A–D, B–D, C–D A–E, B–E, C–E A–F, B–F, C–F 9
3 A–D–G, B–D–G, C–D–G A–D–H, B–D–H, C–D–H A–D–I, B–D–I, C–D–I 27

A–E–G, B–E–G, C–E–G A–E–H, B–E–H, C–E–H A–E–I, B–E–I, C–E–I
A–F–G, B–F–G, C–F–G A–F–H, B–F–H, C–F–H A–F–I, B–F–I, C–F–I

kk y y y 3

At the beginning of each round, a new reagent is introduced to each vessel. For example, A is added to vessel 1 in round 1, D is added to
vessel 1 in round 2, G is added to vessel 1 in round 3, etc.



( )S. Thomke et al.rResearch Policy 27 1998 315–332 331

-vessel 2 contains polymer beads carrying A–E,
B–E, and C–E, and
-vessel 3 contains polymer beads carrying A–F,
B–F, and C–F.

The output of the second synthesis phase is a diver-
sity of 32 s9 compounds. Without the splitting and
mixing of the polymer beads after the first synthesis
round and the combining of the individual pools, the
second synthesis round would have yielded only 3
compounds. Combinatorial chemistry can increase
the number of compounds by the power of the
synthesis phases, resulting in a large chemical diver-
sity very quickly. For instance the third round of the
example given above would result in 33 s27 com-

Ž .pounds see Table 4 .
Chip technology and solution libraries are follow-

ing different chemistries but have similar exponential
increases in compounds generated with each synthe-
sis round. Rapid parallel synthesis, however, achieves
its efficiency gain through robot technology and
parallel execution of many individual reactions.
However, the efficiency gain is not exponential with
the synthesis phase.
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